### **Carbon Impact of Part 9 Buildings**



**Spring Builder & Designer Breakfast** 



### **Key Points:**

- significant reductions in carbon emissions needed to halt global warming
- buildings contribute significant carbon emissions from operation
- building materials represent significant embodied carbon
- buildings are part of the problem, but also part of the solution
- energy efficiency needs to be ramped up: use less energy for same results
- switch fuels to lower-carbon options
- building materials and processes to favour lowercarbon options



## Carbon is coming.



# ?





### What's the issue?

- Greenhouse gases (GHGs) contribute to global warming
- GHGs include carbon dioxide (79%), methane, nitrous oxide, fluorinated gases, refrigerants, etc
- global warming severity of GHGs are ranked against CO<sub>2</sub>
- "black carbon" = soot from burning diesel, coal, biomass fuels
- GHGs = carbon dioxide (or equivalent)
- now we can count GHGs, by counting tonnes of carbon dioxide contained in the particular GHG



### How much is a tonne of carbon dioxide?

- 1000kg mass
- but it's CO<sub>2</sub>, a gas
- 1 tonne CO<sub>2</sub> takes up nearly 20,000 cu ft
- volume of a 2500 sq ft house
- ¼ of an Olympic size swimming pool



### Sources of GHGs:





Part 9 buildings:







### Overview of U.S. Greenhouse Gas Emissions in 2020



- CO<sub>2</sub> is the primary GHG
- others are quantified as "CO<sub>2</sub> equivalents"





Greenhouse Gas Emissions and Sinks: 1990-2020

#### Megatonnes of carbon dioxide equivalent





## Total per-capita carbon footprint by country and sector





### How do buildings fit in?

### Annual Global CO<sub>2</sub> Emissions





## Global building floor area is expected to **double** by 2060.



© Architecture 2030. All Rights Reserved. Data Sources: Global ABC, Global Status Report 2017



In 2040, **2/3 of the global building stock** will be buildings that exist today. Without upgrades, they will still be emitting GHGs.





## Total Carbon Emissions of **Global New Construction**with no building sector interventions





© Architecture 2030. All Rights Reserved.

### Annual Global CO<sub>2</sub> Emissions





© Architecture 2030. All Rights Reserved. Data Sources: Global ABC Global Status Report 2018, EIA

### Buildings are a big part of the issue:

- buildings consume a lot of energy (40%)
- carbon emissions come from energy consumed
- building materials contain/represent "embodied carbon"
- there are many inefficient existing homes, using significant amounts of energy and generating GHGs
- we need to build a lot more homes (apparently)





### What are the solutions:

- BC Energy Step Code in place to reduce energy consumption
- up to 80% energy savings by 2032
- carbon emissions limits coming- end of 2022? "GHGi"
- Step Code for renovations of existing houses?





### What are the solutions, con't:

- requirements for calculations of embodied carbon, from building materials
- fuel switching, to electricity, or renewable natural gas
- significant incentive programs to encourage owners of existing houses to upgrade efficiency and/or fuel switch?











### Going forward to learn more:

- talk to your Energy Advisor about carbon calculations; GHGi most likely coming next
- "carbon benchmark" your current operations
- seminars on carbon: City of New Westminster, HAVAN/CHBA BC, BCIT, etc
- look for opportunities where you can make carbon reduction work for you:
  - municipal incentives
  - green building programs
  - promote your efforts- home buyers are starting to look



### Where are things going (my thoughts):

- significant improvements to the performance/energy efficiency of buildings
- Energy Advisors to generate operational carbon calculations
- Energy Advisors can use embodied carbon calculator tool (MCE2 by NRCan) with HOT2000
- more use of heat pumps:
  - "clean" electricity, energy savings and cooling
- more use of wood as a building material
- fuel switching of regular natural gas to renewable natural gas



### Summary:

- significant reductions in carbon emissions needed to halt global warming
- buildings contribute significant carbon emissions from operation
- building materials represent significant embodied carbon
- buildings are part of the problem, but also part of the solution
- energy efficiency needs to be ramped up: use less energy for same results
- switch fuels to lower-carbon options
- building materials and processes to favour lowercarbon options



## **Questions?**

Thank you!

